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Abstract: The synthesis and biological activity of a novel cyclic

J. Med. Chem2006,49, 7592-7595

[p-Dap*#]GS® andy-aminot-proline-modified G$*6did not
induce hemolysis and can highly permeabilize through outer-
membrane of Gram-negative bacteria. These peptides, however,
are less active against Gram-positive bacteria than wild-type
GS, suggesting that polycationic analogues of GS preferentially
interact with the outer membrane of Gram-negative bacteria.

Biological activities of GS mutants, with-Phe residues at
the 4 and 4positions replaced by otheramino acids, depend
on their conformations. For example, a water-solu®yr+#
analogue, H-Tyr*4]GS, exhibits a weaker hemolytic activity
than wild-type GS by maintaining moderate antimicrobial
activity while mutation byp-Asn, b-His, orp-Ser results in loss
of both activities because theseamino acids did not induce

p-sheet-type antimicrobial dehydropeptide based on gramicidin S (GS) 5-turn conformatior?. Very recently, Grotenbreg et al. have

is described. The GS analogue, containing t&p((-3-pyridyl)-a,3-
dehydroalanine A?3Pal) residues at the 4 and gositions @), was
synthesized by solution-phase methodologies using BocAZ8ral
azlactone. Analogu@ exhibited high antimicrobial activity against
Gram-positive bacteria and had much lower hemolytic activity than
wild-type GS and the corresponding){a.,3-dehydrophenylalanine\?-
Phe) analoguelj.

The global spread of multidrug-resistant bacteria is a growing
threat to human healthCationic antimicrobial peptides (CABs

reported that aryl substituents in the turn regions of GS and
analogues are indispensable for bactericidal acfion,s-
Dehydroamino acids AAAs) are hitherto used fopB-turn
inducers of de novo peptidé% Shimohigashi et al. reported
that replacement ob-Phe residues in GS withZJ-o,5-
dehydrophenylalanine\éPhe, Figure 1a) residues stabilizes its
p-sheet conformation with maintaining strong antimicrobial
activity 2223 Recently, we designed a novalAA, (2)-(8-3-

that attack bacterial membranes are promising agents forPYridyl)-a.-dehydroalanineA?3Pal, Figure 1a}!In the present

combating bacterial pathogehsonsequently, the modes of
action of CAPs, and in particulax-helical CAPs, have been

study, we found that replacement afPhe residues inA?-
Phe4]GS (1, Figure 1b) with AZ3Pal drastically reduces

extensively studied by various Synthetic and Spectroscopic CytOtOXiCity to human erythrocyte without loss of antimicrobial

techniques.

Gramicidin S (GS,cycldVal-Orn-Leub-Phe-Pro)) is a
membrane-lytic cyclic peptide antibiotic that acts against both
Gram-positive and Gram-negative bactéfdMR® and X-ray
crystallographic studiésestablished that the main-chain con-
formation of GS is a stable antiparall@isheet conformation.
Type II' S-turn moieties that connect two shgttstrands are
essential for the bioactive conformation of &8 Although the
mode of action of GS toward biomembranes is not completely
understood, GS is generally believed to perturb lipid packing,
resulting in the destruction of the cytoplasmic membrane’s
integrity and enhancement of its permeabifitynfortunately,

the use of GS for therapeutic purposes has been limited to topical

application because of its high toxicity to human red blood cells.
Therefore, structureactivity relationships of GS and related

cyclic peptides have been studied to dissociate its antimicrobial

and hemolytic activities and to elucidate the mode of actidh.
The selectivity of CAPs including GS toward biomembrane

is governed by a net positive charge of peptides and their

amphiphilicity® Polycationic decapeptide analogues of GS,
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activity.

AZ3Pal-containing analogue of GR\43Paf*]GS (2), was
synthesized by solution-phase method as shown in Scheme 1.
Boc-LeuAZ3Pal azlactone9) was initially synthesized from
B-3-pyridyl-oL-serine {) as previously reportef. Treatment
of 9 with H-Pro-OMe (1.05 equiv) in the presence of a catalytic
amount of DMAP (0.05 equi¥y afforded Boc-LeuAZ3Pal-Pro-
OMe (10) in 96% yield. Addition of excess amounts of H-Pro-
OMe (1.5 equiv) gave a mixture a0 and Bocp-Leu-AZ3Pal-
Pro-OMe (/o = 51/49 estimated byH NMR). Stepwise
elongation of Orn(For) and Val residues afforded protected
pentapeptide derivativel®). Protected decapeptide5 was
derived from12 by segment condensation. Saponification of
15followed by acidic deprotection of Boc group gave a linear
decapeptidd 7. Cyclization of17 under a high-dilution condition
in DMF afforded [Orn(Forj2, AZ3Paf#]GS (4), whose struc-
ture was confirmed byH NMR and ESI-MS. At first, yield of
the cyclic product was extremely low in spite of using potential
condensation reagents such as BOP-CI (trace) or PyBOP (15%).
The use of HATU improved the yield up to 85%. Finally,
deprotection of formyl groups affordeziin good yield. ;AZ-
Phe4]GS (1), [A?Phe? AZ3Paf]GS (3), and a tetrahydro
analogue of2 ([p-3Paf4]GS, 6) were also synthesized in
comparison (see Supporting Information). These pyridine-
containing analogues were highly soluble in water, while wild-
type GS andl were hardly solublelH NMR and ESI-MS
measurements revealed tHatcontains small amount oAF-
3Pat# isomer E/Z = 9/91 estimated by HPLC).

As shown in Figure 2, NOESY spectral analysis indicated
that the configuration of thg-substituent inA3Pal residues is
the @)-form because strong NOE betweeiCH(AZ3Paf#) and
0-CHy(Pro>®) was observed. Steric proximity betwed&NHz"-
(Orr2) anda-CH(PrdS) suggests the stabilization gfsheet
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Figure 1. (a) AZ3Pal,A?Phe, and-3Pal and (b) GS analogues in this
study.
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aReagent and conditions: (a) Boc-Leu-OSu, 10% aqueous NaHCO

1,2-dimethoxyethane= 1:1 (v/v), 0°C — room temp, 24 h; (b) A®,
AcONa, 3 h; (c)HCIH-Pro-OMe, DMAP (5 mol%), NMM, CHGJ, 0 °C

— room temp, 24 h; (44 M HCI in dioxane, (°C, 2 h; (e) Boc-Orn(For)-
OH, EDCGHCI, HOBt, NMM, CHCl, 0 °C — room temp, 24 h; (f) TFA,
0°C, 2 h; (g) Boc-Val-OH EDEHCI, HOBt, NMM, CHCL, 0 °C — room
temp, 24 h; (h 1 M aqueous NaOH, 50% aqueous MeOH,®— room
temp, 2 h; (i) EDGHCI, HOBt, NMM, CHCl, 0 °C — room temp, 24 h;

(j) HATU, DIEA, DMF (final concentration, 1 mM), GC — room temp,

2 days; (k) 10% HCI in MeOH, room temp, 2 days.

conformation by hydrogen-bonding interaction betwééyiHsz"-
(Orn?2) and CG=0(A%3Pat*) like wild-type GS26

Shimohigashi et al. have previously reported thdPhe#
analoguel adopts a stable antiparalj@isheet conformation like
parent GS by*H NMR analysis??23 Variable-temperaturéH
NMR experiments revealed that fourNs of Val-* and Led?
in AZ3Pal-containing analogu@sand3 were hydrogen-bonded.
8JnH—ch Values of Val, Orn, and Leu residues (ranging from
8.6 t0 9.5 Hz) correspond to thiesheet conformation (Table
1). In contrast, the temperature shift coefficiend(AT) and
the 3Jyn—cH value of a-NH(p-3Pal) in 6 slightly differ from
that ofa-NH(p-Phe) in wild-type GS, suggesting that the main-
chain conformation 06 is slightly distorted.

CD is also useful for studying conformational changes of GS
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Figure 2. Selective NOESY spectrum & (20 °C, DMSOs, 8.95
mM, t,m = 1000 ms).

Table 1. Amide Proton Temperature Shift CoefficientSq{/AT, ppb/K)
and Coupling Constant8Jun—cn, Hz) of GS and Its Analogues in
DMSO-dg®

peptides valr Orr?2 Lew? Xaa?
GS -1.8(9 -48(9.1) —2.8(8.8) —7.2(3.0)
1 -1.1(9) —-5.6(8.9) —26(86) —5.3(9
2 —0.9(10.0) —5.6(9.5) —2.6(85) —4.6(4)
3P c -48(9.1) —26(9.5) —53(%)
c -48(9.1) —28(9.0) —4.6()
6 -23(9) -42(95) —27(85) —57(4.0)

a3Jyn—cH values are in the parentheses and are measured a€.20
b Upper: Val-AZPhé. Lower: Val-AZ3Paf. ¢ Overlapped with aromatic
protons.d Singlet.
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Figure 3. CD spectra of GS1, 2, and6 in MeOH (20°C).

with a shoulder at 217 nm. The difference is mainly due to the
a,3-double bond chromophore &ZPhe, and the band at 280
nm is characterized as A?Phe-ProS-turn structure?? In the
case ofAZ3Pal*# analogue?, the spectrum is essentially similar
to that of1, suggesting tha2 adopts a cyclig-sheet conforma-
tion similar to that ofl and GSb-3Paf* analogues exhibited

a CD spectrum similar to that of wild-type GS but with much
weaker intensity. In an earlier study by Kopple et al., cyclic
hexapeptide related to G8yclo(Orn-D-Phe-Proy, exhibits two
negative bands centered at 222 and 200 nm in HFIP, which is
characteristic of type 1|5-turn conformatior?’ In the case of

6, the decrement of the ellipticity suggests that the main-chain
conformation of6 was distorted or destabilized compared with
the wild-type GS, which is consistent with the resultidfNMR

analogues from parent GS. Figure 3 shows CD spectra of GSanalysis.

and analogues in MeOH. has three negative bands at 210,

Biological activities of GS analogues were evaluated by a

236, and 280 nm, while GS has a negative band at 206 nmsimilar method reported previous!y. Table 2 shows the
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Table 2. Antimicrobial Activity of GS Analogues

MIC (ug/mL)
Staphylococcus Escherichia coli
peptided aureus209P K12 strain W3110
GS 4 16
1 4 32
2 8 32
3 4 32
5 4 32
6 64 64

Hemolysis (%)
R R E R EEEEE

T - 2
0 10 20 30 40 50 60 70 80 90 100
Peptide concentration (ug/ml)
Figure 4. Dose-dependence curves of hemolysis induced by GS
analogues.

antibacterial activity determined by the liquid-broth method and
that AZ3Paf** analogue? exhibited potent antimicrobial activity
against Gram-positiveStaphylococcus aurepswhich was
comparable to those of wild-type GS andPhée# analoguel.
The MIC value of the analogue containidg3Pal andAZPhe
residues §) was comparable to that ob{Tyr*#]GS (). It is
noteworthy that hemolytic activity & was drastically reduced
in comparison with those of other analogues (Figure 4). These
observations suggest that incorporatiomé8Pal residues leads
to diminished cytotoxicity to human erythrocyte without dis-
rupting the bioactive conformation of GS. To clarify the
structural importance ak?3Pal residues in antibacterial action,
biological activities of p-3Pal*]GS (6) were evaluated. As
expected, water-solubkdid not induce hemolysis (Figure 4),
but it was inactive agains$. aureusandE. coli (Table 2).
Relative hydrophobicity and hydrophilicity of peptides in-
cluding GS-related peptides could be evaluated by HPLC
analysis?® Figure 5 shows the correlation among biological
activities of GS-based peptides and their retention tire.
3Pal analogu@ had a lower retention time compared with all
hemolytic analogues and higher retention time compared with
6, indicating that6 is slightly more hydrophilic tharR. At
present, we speculate that the lost of antimicrobial activit§ of
is related to its higher hydrophilicity and conformational
distortion mentioned above. Increased hemolytic activity was
accompanied by a retardation of elution time. A remarkable
difference between MIC and Epwas observed only in the
case of twoAZ3Pal-containing2. As a result, introduction of
two AZ3Pal residues into the GS framework provides moderate
hydrophilicity without interfering with permeation & across
bacterial membranes. Interestingly, Katsu et al. have reported
that antimicrobial [Al&?,AZPhé#]GS, an analogue df lacking
cationic Orn residues, enhances theé Kfflux from human
erythrocyte, resulting in changes in its morphology. On the other
hand, inactive [AlI&2]GS scarcely induces the chargjeThe
difference implies that the aromatic and conjugated planes in
A?Phe residues play a crucial role in membrapeptide
interaction and/or its permeation through a phospholipid bilayer.
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Figure 5. Correlation among biological activities of GS-based cyclic
decapeptides and their retention time in HPLC analysis. Closed circles
and opened triangles indicate MIC values tow&rcaureus209P and
EDso values toward human erythrocyte. The following conditions were
applied for RP-HPLC analysis: column, YMC-pack ODS R&D (6.0
mm i.d. x 250 mm); flow rate, 1 mL/min; eluent, 4B5% aqueous
CHsCN (containing 0.1%TFA); detection, 270 nm~3), 220 nm
(others).

Therefore, it is considered tha3Pal analogu€ possessing
similar aromaticAAA residues in thes-turn moieties could
interact with bacterial membranes likeand [Al&22,AZPhe-*]-
GS. At present, however, the mechanisms of actioR afe
not fully understood.

In conclusion, we have discovered a novel antimicrobial
cyclic peptide2 that exhibits high solubility in water and low
hemolytic activity. Our findings should be helpful in obtaining
new insights to the rational design of noykkheet-type CAPs
with low hemolytic activity.
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